
Adaptive Behavioral Programming

Nir Eitan and David Harel

Dept. of Computer Science and Applied Mathematics
Weizmann Institute of Science, Israel
firstname.lastname@weizmann.ac.il

Abstract—We introduce a way to program adaptive reac-
tive systems, using behavioral, scenario-based programming.
Extending the semantics of live sequence charts with rein-
forcements allows the programmer not only to specify what
the system should do or must not do, but also what it should
try to do, in an intuitive and incremental way. By integrating
scenario-based programs with reinforcement learning methods,
the program can adapt to the environment, and try to achieve
the desired goals. Visualization methods and modular learning
decompositions, based on the unique structure of the program,
are suggested, and result in an efficient development process
and a fast learning rate.

Keywords-scenario-based programming; adaptive systems;
reinforcement learning; behavior-based; LSC ; BPJ

I. INTRODUCTION

The design and development of reactive systems, whose

role is to maintain an ongoing interaction with their environ-

ment, is a research area with many challenges, and in recent

years has been the subject of considerable work. In 1999,

an extension of the language of message sequence charts
(MSCs), termed live sequence charts (LSCs) was introduced

by Damm and Harel [1], in order to describe the inter-object

based behavior of reactive systems.

The LSCs language embodies the scenario-based pro-

gramming approach, whose main goal and dream is to make

programming more natural, and to render the process a

smooth extension of the way we think [2]. Lately, we have

begun to call the general paradigm underlying executable

scenarios behavioral programming; see [3], [4]. Scenarios

in LSC contain multi-modal actions and conditions, and

can describe what should be done, what can be done and

what may not be done. These scenarios are programmed

independently, or semi-independently, in a modular fashion,

and are later interleaved to dynamically obey the rules they

state and thus form an executable program; see [5].

In this paper we propose to give the user the possibility

to not only set these multi-modal rules and boundaries, but

also to specify a desired behavior in an easy and intuitive

way, by setting the goals the program should achieve, and

the scenarios it should avoid. The program is then given

the freedom to learn and adapt according to its experience

from the environment. Such adaptivity is highly desirable, as

the programmer cannot always anticipate how the reactive

system’s environment will react. In addition, it allows the

programmer to focus on specifying his/her needs, while

leaving the details and optimizations to the program, thus

emphasizing the advantages of behavioral programming, and

offering a natural and modular way to program.

Specifying desired behavior is done by associating scenar-

ios with rewards and punishments. As the model is executed,

it learns the best behavior according to these reinforcements:

for every state, represented by the progress cuts in the LSCs,

it learns from experience what the preferred action is for

achieving optimized expected reward. This is done by using

reinforcement learning methods and integrating the resulting

policy into the action selection mechanism, which is used

whenever multiple events are available.

Unfortunately, the standard way of doing this gives rise to

an exponentially growing number of possible states. In many

cases, optimizing is a necessity for obtaining a feasible learn-

ing process, especially in dynamic environments. We suggest

three learning methods that exploit the unique structure of

the scenario-based program, yet retain the modularity and

simplicity of the programming process. The performance of

these methods is compared for two sample programs.

We also address visualization issues. Analyzing program

execution traces and being able to understand the resulting

sequences of actions are critical stages in the development

process, and can be helpful in detecting bugs and updating

the program’s goals.

II. INTEGRATING REINFORCEMENTS INTO BEHAVIORAL

PROGRAMS

A. Implementing scenario-based programming

The scenario-based approach to behavioral programming

can be carried out in various ways. The Play-Engine tool

was built in 2003 to support LSCs and the play-in and

play-out approaches for programming and executing them,

respectively [5]. More recently, the first version of a new,

more powerful tool, PlayGo, has been completed [6]. Both

tools allow system designers to play-in the required multi-

modal scenarios of behavior via a user-defined GUI, and the

scenarios are translated on the fly into LSCs. The resulting

LSC specification can then be fully played out (executed),

using a coordinated means for choosing an appropriate event

for execution at each stage, which adheres to the multi-

modal nature of the state of each chart. All the events in

2011 23rd IEEE International Conference on Tools with Artificial Intelligence

1082-3409/11 $26.00 © 2011 IEEE

DOI 10.1109/ICTAI.2011.109

685

Figure 1. Two goal LSCs for a can-picking robot. The ThrowCans
LSC describes a scenario in which whenever a can is detected, the robot
can collect it, move to the garbage, and dispose of it. Whenever this is
accomplished, a reinforcement of +3 is given. The Fuel LSC describes
a scenario in which whenever three moves are carried out without charging
in between, a small negative reinforcement, of −1, is given.

the specification that are unifiable with the chosen event are

advanced too; see [5].

A Java-based counterpart to LSCs has also been developed

recently, via the BPJ library (for behavioral programing in

Java) [3]. Scenarios are programmed using Java b-threads,

which are synchronized periodically at given syncpoints. At

each syncpoint, a b-thread can be set to request, wait for

and block (i.e., forbid) specific events. Similarly to the LSC

play-out process, at each step during execution, a centralized

arbitrator chooses an event that is enabled for execution,

meaning that it is requested but not blocked. The event is

executed, and all scenario instances waiting for that event

are advanced.

In this paper, we suggest ways to modify these choice

and execution mechanisms, which, coupled with appropriate

extensions to the LSC language and BPJ, render both

languages suitable for dealing with adaptive behavior.

B. Extending the LSC language

We suggest to extend the syntax of LSCs with the

notion of reinforcements, in order to describe desired and

non-desired behaviors. The syntax is similar to the way

assignments appear in the language, with the ability to

visually bind (i.e., sync) the reinforcement signal to one

or more of the LSC lifelines. Whenever the LSC advances

and all the synced lifelines reach the reinforcement position,

the reinforcement is enabled and given to the program,

teaching it to either avoid or try to repeat the executed

behavior. A numerical value, positive or negative, is assigned

to the reinforcement, indicating how desirable reaching this

reinforcement is.

Figure 1 shows two almost self-explanatory LSCs that

demonstrate adding positive and negative reinforcements.

C. Modeling LSCs as a Markov decision process

To use reinforcement learning methods, we first model

the scenario-based program as a Markov decision process

(MDP), a widely-used approach to sequential stochastic

decision problems. An MDP is a 4-tuple (S,A, P,R), where

S is a finite state space; A(s) is a finite action space

given the state s; Pa(s, s
′) corresponds to the probability of

moving from state s to state s′ by executing action a; and

Ra(s, s
′) is the reward given when moving from state s to s′

by executing the action a. A reinforcement learning task that

satisfies the Markov property — i.e., a memory-less process

such that the current state provides the best possible basis

for choosing an action — can be modeled as an MDP [7].

The optimal policy, that is a mapping between states and

possible actions that maximizes the expected utility, can then

be found; at least in principle.

Let the scenario-state at a given time be the cut of the

corresponding LSC, augmented by the current valuation

of internal variables. The states of the MDP for an LSC

program correspond to the Cartesian product of all its

scenario-states, S =
∏

l∈LSCs Sl. The action space As is

set to consist of all enabled events in state s, and Ra(s, s
′)

is the sum of reinforcements given in all the charts that

advanced after the event a was executed.

After an action is selected and executed, an external event,

such as a user action or the completion of a sensor reading,

may occur. Only after all external events are executed, and

the system can choose an internal event to execute, does the

system reach a new Markov state, and the Markov transition

ends. The transition probability P of moving from state s to

s′ given action a is therefore dictated by the external events

of the system. Typically, this probability function will not be

foreseen when programming the system, and must be learned

from experience, using reinforcement learning methods.

We note that a single LSC can seldom be modeled as

an MDP since, given a scenario state, the set of possible

actions is not even fixed: another scenario can block the

execution of one or more of its actions, or might cause

another event request. In addition, for many kinds of systems

with an unknown environment, programming the system

with pure Markov states, where the environment behavior

depends only on the system’s state, may be hard or im-

possible. However, given a detailed enough state-space, an

approximation to a Markov state can be obtained, which

is generally not considered to be a severe problem for a

reinforcement learning agent [7]. The more detailed the

program is, describing more possible scenarios that may

affect the environment, the better the optimal policy will

be, though it will usually take longer to be learned.

D. Scenario classification

Different scenarios may have different functions in the

learning mechanism. Some may set goals and prescribe

behavior, for others the goal is negative — i.e., to forbid

686

certain behavior — and some may not participate in the

event selection mechanism at all. The programmer can set

the learning functionality of the scenarios according to the

following classification:

• Goal-Scenarios: ones that grant reinforcements.

• Base-Scenarios: ones that may affect the run or increase

the state-space, but do not give any reinforcements.

• Auxiliary-Scenarios: ones that do not participate in the

learning at all, and are used to monitor the execution,

as test-cases, or for user interface functions.

This classification is demonstrated in section V.

III. LEARNING AND ADAPTIVITY

A. Temporal difference learning

The underlying idea of reinforcement learning is to learn

what to do in order to maximize some notion of cumulative

reward. The program is not told what actions to take for

every situation, but rather discovers this by trying [7],

receiving rewards or punishments in the process.

In the current work, the reinforcement learning problem

is solved using temporal difference (TD) learning [7]. TD

learning works directly from raw experience without having

to know the exact environment model (thus, it is model-free),

but keeps updating its estimate as it progresses. This online

characteristic of the learning makes it extremely suitable for

reactive systems that run indefinitely, or for very lengthy

periods. The model-free feature makes it more adaptable and

easier for the programmer, who doesn’t always know all the

parameters of the system, or can predict the environment.

For every state, and for every possible action given that

state, an expected reward prediction Q(s, a) is retained,

and is dynamically updated according to the actual rein-

forcements given. We use the SARSA algorithm for this,

which has been shown to be highly beneficial in modular

learning [8], [9]. The SARSA algorithm is on-policy, so

Q(s, a) is updated according to the used policy and the

actual next action taken, and it allows convergence of the Q-

values to the optimal ones [10] (under certain conditions).

A tradeoff between exploration, the ability to look for a

new strategy, and exploitation, using what the agent already

knows about the environment, can be made by using the

softmax action selection rules [7].

B. Modular scenario-based learning

Basic reinforcement learning algorithms do not scale up

easily; their performance tends to degrade rapidly as the

size of the state space increases. Generalization and function

approximation methods that make it possible to use a limited

subset of the state space have been extensively studied, and

various solutions are being researched and used — neural

networks and linear approximation, for example. Most of

these methods, however, require the programmer to tailor a

specialized solution to a given problem, whereas our quest

is to seek easy-to-use and generalized methods.

Our suggestion for generalized optimizations is based on

the modular learning approach, as suggested in [11], where

the program is decomposed into components (sub-agents),

each using its own predefined state space. The program’s

decomposition and the state space of each component are

usually assumed to be known and implemented by the user.

We propose optimizations for use in behavioral, scenario-

based programming, for which no further work is required,

thus easing the programming process itself and retaining

the benefits of scenario-based programs, such as behavioral

modularity. While the solutions afforded by our method

might be further from the optimal than those of some

of the specialized methods, we believe that the simplicity

in programming and maintenance makes it beneficial for

adaptive system programming.

To implement modular learning in the scenario-based

paradigm, a centralized arbitrator first derives the enabled

actions. Then, the goal-scenarios of the program, functioning

as the modular learning sub-agents, place their votes for

every enabled action by sending the arbitrator their cor-

responding Q-values. The arbitrator then selects an action

according to the sum of votes
∑

j Qj(s, a), thus maximizing

the average satisfaction of the goal-scenarios in taking an

action; see [8] for an overview of arbitration functions. Each

such sub-agent maintains its own Q-value table, and learns

only according to its own reinforcements.

The problem of determining the state space of each of

the sub-agents is yet to be solved. We define Su to be the

scenario-state of scenario u, and S̃u the overall state-space

of that scenario; i.e., the states it can perceive. V is the set of

all the scenarios of the program, excluding auxiliary-ones.

The naive approach is to let each goal-scenario learn

and make decisions according to the overall program state

space, which is the Cartesian product of all the states of

all active non-auxiliary scenarios, S̃u =
∏

v∈V Sv . We call

this method full learning. Using the on-policy reinforcement

learning algorithm SARSA on each sub-agent separately, a

globally optimal policy is achieved [9].

This optimality is only assured as long as each sub-agent

updates its Q-table according to the overall program state.

Unfortunately, using such a globally shared state space may

result in slow learning, with intensive memory and CPU

requirements, as the number of states and size of the Q-

table can be exponential in the number of scenarios.

In the egocentric scenario learning method, on the other

hand, we allow no collaboration between scenarios. Each

tries to push for its own goal without knowing the state of

the others, and its perceptual horizon is only set on itself,

S̃u = Su. The main benefit of this method is the greatly

reduced state space, which is now polynomial in the number

of scenarios, making it feasible to run large-scale reactive

programs. In addition, adding a scenario does not affect

the state spaces of existing scenarios, resulting in better

modularity. On the other hand, the learned policy may be

687

highly suboptimal.

The third scenario-based learning method we suggest is

perceptual scenario learning. It makes a compromise in

state-space size between full learning and the egocentric

method. The perceptual method is based on self-learning

the inter-dependency graph of the scenarios during program

execution, and using it to set the perceptual horizon of each

scenario. Each scenario then learns only according to the

scenarios that can affect it.

We define the inter-dependency graph as follows. Its

vertex set V represents all scenarios, excluding auxiliary

ones. A directed edge exists from scenario u to scenario v iff

the state of v directly affects the state transition of scenario

u; i.e., iff v blocks u’s requested events, thus disabling an

event transition, or v requests something that u is waiting

for, thus enabling a transition, or v interrupts u, ending the

scenario.

We say that scenario u depends on scenario v iff there is a

path from u to v in the inter-dependency graph. Let D(u) be

the set of scenarios upon which u depends. The state-space

of a goal-scenario u is then set to be the Cartesian product

of all states upon which u depends, S̃u =
∏

v∈D(u) Sv .

To prevent overestimation of the dependencies, we use

a dynamically-built inter-dependency graph, constructed on

the fly during execution. It counts dependencies that ac-

tually occur during the execution, and ignores states that

are unreachable. When an edge is added, the Q-value is

updated, Q(snew ×
∏m

i=1 si, a) ← Q(
∏m

i=1 si, a), reusing

the previously acquired knowledge.

Although each sub-agent can be modeled as an MDP

(given a state, the action set is now fixed), there is still

no guarantee of convergence to the optimal policy, since

the sub-agents still interact with each other, via the central

arbitrator and the action selection mechanism. Examples that

do not converge to the optimal solution can be easily given.

However, it has been shown that even though perceptual

aliasing might prevent convergence to the optimal strat-

egy, the on-policy SARSA algorithm usually yields good

results [8], [12], given a good decomposition.

C. Coordinating the reinforcements

While the scenario-based approach allows modularity in

setting the goals, setting the reinforcement of a newly-

added goal in a way that is consistent with the previously

programmed scenarios might be tricky. In some cases,

the reinforcements might not be comparable between the

scenarios, and no ideal arbitrator is possible [13].

To partially deal with this problem and retain program-

ming modularity, a ground scale was given to the reinforce-

ments, by using reinforcement constants. Instead of setting

a numerical reinforcement, the programmer can set the

reinforcement to be, for example, REWARDS.HIGH, in this

case indicating a highly desirable goal. By using consistent

values, setting the reinforcements of a new scenario can be

done independently of the earlier scenarios.

To further aid in balancing reinforcements of goal-

scenarios, we allow the programmer to externally strengthen

or weaken scenario reinforcements. In addition, static prior-

ities may be given to scenarios, allowing the creation of

layers of scenarios with a given priority. The arbitrator then

selects one of the available actions that was requested by a

scenario with the top priority.

D. Setting the meta-parameters

Using the SARSA algorithm, multiple meta-parameters

must be set. Using such parameters wisely can greatly

enhance the learning performance, but setting them properly

is not an easy or intuitive task for the programmer. In the

current version of our tool they are kept fixed, thus (at

least for now) sacrificing optimality for user experience. The

parameters were set according to their performance as tested

in multiple medium-sized applications. It is assumed that the

programmer uses the same reinforcement scale as used by

the reinforcement constants.

In updating the Q-values, two parameters must be set: γ,

the discount factor, and α, the learning rate. They determine

the importance of future rewards and the importance of

newly required information, respectively. In the current tool

we set these as γ = 0.9, α = 0.5. A Boltzmann distribution,

with a temperature of τ = 3.5, was used in the softmax

action selection, to allow exploration.

Eligibility traces allow the rewards to be propagated

to a sequence of the past actions. It allows faster learn-

ing [7], with some computational cost, something that seems

especially important in reactive systems with a dynamic

environment. It can also help in the case of perceptual

aliasing [14], which can mostly happen in the egocentric or

perceptual scenarios learning. A replacing eligibility trace,

with λ = 0.95 , was used.

IV. VISUALIZING LEARNING

A. Trace visualization

We extend previous work on a visualization tool for

scenario-based programming [15], [16], which allows view-

ing the trace during execution and the interaction between

the behavioral modules. We offer browsing, filtering, and

grouping mechanisms for comprehending traces, and the

following notations are added to aid in the comprehension

of adaptive programs (see Figure 2):

• Reinforcements: A purple plus icon and an orange mi-

nus icon represent positive and negative reinforcements,

respectively.

• Scenario-states: Locations in which a scenario changed

its scenario-state are marked with a gray icon with the

name of the new state.

• Program state: Colored tables, located above the names

of the events that were executed at each syncpoint,

688

Figure 2. A partial trace visualization of the salad-cutting robot program,
described in section V-A. By looking at the 212th syncpoint, one can see
why the Fuel event was chosen, by comparing the total votes it was given
to the alternatives, and checking why other events were not enabled.

indicate the overall program state at the syncpoint,

thus enabling visually following the state changes of

the program. Each table cell is colored according to a

specific scenario-state.

• Paths not taken: Events that were enabled at a given

syncpoint but were not executed due to the learning

mechanism, are marked by a split arrow icon. Hovering

over the icon, the sum of Q-values for all enabled

events is shown, helping the programmer understand

why a given event was executed and another was not.

B. Inter-dependency Visualization

The dynamic inter-dependency graph is shown during

program execution, allowing the programmer to comprehend

the structure of the program and the perceptual horizon of

each scenario. The graph is depicted using a Java software

library for data visualization, called JUNG [17], where nodes

correspond to encountered scenarios and directed edges

represent dependencies between scenarios. The graph allows

the programmer to comprehend the structure of the program,

and understand better how the scenario-based optimization

works for his program.

For each goal-scenario node, the total reinforcement given

so far by that scenario is displayed and is color-coded: white

means the total reinforcements given by this scenario sum

to 0; orange represents an “anti-goal-scenario”; that is, a

scenario with total negative reward; and purple indicates

a total positive reward. The stronger the color’s hue, the

stronger the reinforcements. Base-scenarios are colored gray

and give no reinforcements. Auxiliary-scenarios are not

displayed at all. See Figure 3.

V. USAGE AND EVALUATION

We now present two examples of behavioral, scenario-

based programs, and demonstrate the effectiveness of our

learning methods. We consider both static and dynamic

environments. The examples were implemented and tested

on BPJ, and are available on [18].

Figure 3. The inter-dependency graph of an execution of the salad-
cutting robot, described in section V-A, where two of the tiles were set to
be wet. The DeliveringSalad scenario depends, among others, on
CollectingTomato, SaladWashing and SimpleEngine,
but is independent of the fuel status and wet floors. The UsingFuel
goal-scenario depends only on the Fueling scenario and the robot

position (via SimpleEngine), and the WetFloor scenarios only
depend on the position.

Figure 4. The salad-cutting robot GUI. The robot needs to pick a tomato
from square t and a cabbage from c, wash them in w, and put them one by
one in p. After mixing them together in square p, they can be served in r
(the robot’s current location). Fueling at square f fills the robot’s fuel tank
(displayed by its side), preventing low-fuel penalties. A wet floor square
(in red), which can be set by the user, gives the robot an additional penalty
for passing through.

A. A salad-making robot

In this example, the program simulates a simple robot

situated on a 3x3 grid, and who needs to accomplish

certain goals (see Figure 4). A DeliveringSalad b-thread

describes a goal-scenario where after both a tomato and a

cabbage are retrieved, the robot should mix them together,

and then receives a very high reinforcement (+10) for

serving the resulting dish. UsingFuel describes a scenario

in which whenever the fuel is down a negative reinforcement

(of −1) is given for every move, since the robot needs to use

an alternate power source. Finally, FloorWetting specifies

that from whenever a tile becomes wet until it dries, the

robot receives a medium negative reinforcement (−1) for

passing on it.

Base-scenarios further add details to the salad serving

world, and to what the robot can do. CollectingTomato

and CollectingCabbage describe the scenarios of col-

689

lecting the vegetables, from picking them up, via washing

them, to putting them in the kitchen; TomatoPicking and

CabbagePicking describe where tomatoes and cabbages

can be picked; Washing allows the robot to wash the

vegetables; MovingAround describes the robot’s move-

ment (one square at a time, horizontally or vertically);

SettingBorders set the borders of the board; and so on.

Auxiliary scenarios, which do not participate in the

learning, can be added too. Here, CoordinatingTime

and AutomatingWetFloor were added for debugging and

testing issues, and are responsible for slowing down the

simulation and simulating an environment change of floor

wetting, respectively.

The results of running this example, as shown in Figure 5,

point clearly to the advantage of using perceptual learning

in such an application. Egocentric learning only gave the

best results in the first 1000 or so moves, and learns

how to save fuel quickly. However, it does not succeed in

learning the salad delivery goal properly, and provides a low

reinforcement rate, even after a long period of learning.

The full learning method slowly learns the task, but

accumulates a high negative reward while doing so. Not only

does it take it the longest to learn a good policy, but it also

suffers the most from the changes in the environment (Figure

5(c)), since it remembers and keeps more information, some

of it irrelevant to the achievement of specific tasks. The

perceptual learner, however, learned the best policy, and did

it quickly, rendering it the best solution for this example.

Each sub-agent only learned according to the most relevant

information, as seen in the inter-dependency graph (Figure

3), and only the position of the robot was shared between

the sub-agent’s state spaces.

We note that the graphs only count the number of moves it

takes to achieve a good policy. The CPU time and memory

that were used by the full learning method were several

times larger than those used by perceptual learning, and

much greater than those used by the egocentric method.

B. Board games

In this section we emphasize online learning of adaptive

games, where the learner must keep its efficiency, while both

the environment and the game rules might change. This

view is a bit extreme for normal board games, in which

the rules are fixed and a long training session is available.

Nevertheless, we believe that an adaptive gaming approach

is interesting, can represent a simplified model of more

complex real-life problems, and may greatly benefit from

the scenario-based modularity. A survey on board games

and the usage of reinforcement learning to obtain a good

strategy is given in [19].

We concentrate on the classical game of Tic-Tac-Toe

(TTT), where two players, X and O, take turns in marking

a 3x3 board, each trying to form a horizontal, vertical

or diagonal line to win. Tic-Tac-Toe is simple and has a

Figure 6. The inter-dependency graph of a Tic-Tac-Toe game. Each
scenario (graph node) is dependent on all others.

relatively small state space. In previous work of our group

TTT was programmed very naturally using the scenario-

based approach [3]. Rules were given more or less indepen-

dently, and they are interleaved during execution: b-threads

of classes DetectWinByX and DetectWinByO detect vic-

tory conditions; EnforcePlayersTurns force players to

alternate turns; DisallowSquareReuse prevents a square

from being chosen twice; and DefaultMoves sets all the

possible game moves.

Strategy scenarios, such as scenarios that prevent the

completion of an opponent’s line or countering forks, can

be added as well, resulting in an expert Tic-Tac-Toe player.

In contrast, here we do not implement any such strategies;

we use only reinforcement learning methods to learn the

strategy. This allows the computer player to adapt and

exploit the specific strategy its opponent is using. It also

indicates how we might use this learning-program method

to deal with more complex games, where the strategy is

unknown, or is hard to program. Nevertheless, combining

strategy scenarios that represent prior knowledge with the

system learning abilities, will probably give the best results.

The inter-dependency graph of a TTT game, shown in

Figure 6, has a clique between the goal-scenarios: each one

depends on all the rest. The reason is the way each scenario

can interrupt others: given that a line is formed and one of

the goal-scenarios is accomplished, that scenario interrupts

all others, prevents them from being carried out, and the

game thus ends. This is the general rule in all games where

only one goal can be accomplished, which indicates that

the space-state of such games can probably not be easily

decomposed, and perceptual learning is really the same as

full learning.

Running a sequence of games between an egocentric

learner and a full learner results in a short-term advantage to

the egocentric. However, this advantage is quickly replaced

by the superiority of the full learner, which derives from its

690

(a) (b)

(c) (d)

Figure 5. Results of running full learning, perceptual learning and egocentric learning on the salad-cutting robot. (a) and (c) describes the reward rate
(reinforcements per 1000 games), (b) and (d) describes the cumulative reward, with its standard deviation. (a) and (b) are the results for static environment,
and (c) and (d) for a dynamic environment, where a wet floor was added at tile (0, 1) on the 8000th event, and another one at (2, 1) on the 10,000th
event. The results were averaged over 10 test episodes for each learning method

Figure 7. This figure compares the performance of the full learner against
an egocentric learner, on both a normal TTT game and a modified game in
which the two scenarios 3Corners and 3Sides were added in the 7th
session. The graph shows the number of points (victories and losses) won
by the full learner per session, where each session contains 2000 alternating
games. The results were averaged over ten trials.

better optimal policy (see Figure 7). When the additional vic-

tory scenarios 3Corners and 3Sides are inserted, allowing

the O player to gain two victory points for having marked

either three of the corners or three of the tiles adjacent to

the central one, the egocentric learner is faster to learn and

take advantage of these.

VI. RELATED WORK

The bottom-up approach that calls for modeling intelli-

gence as simple behavioral modules and then “setting them

off” to yield emergent behavior, is also part of the behavior-
based artificial intelligence movement in AI, following

Brook’s subsumption architecture [20]. While at first no

central arbitration or learning function was used, these were

added in later work [21], [22]. Our own work here combines

the ideas of behavior-based AI architecture with a natural

and intuitive programming language, aspiring to give rise to

a better programming experience.
Integrating modular reinforcement learning with a pro-

gramming language is the approach taken also in [12]. The

agent there consists of a set of behaviors programmed in

ABL [23], each of which can vote for the next action to be

taken. We share the goals described in that work, and believe

we offer a different (and hopefully somewhat richer) kind of

interaction between behaviors, and better modularity. This is

because the programmer need not be concerned with agent

decomposition and defining the state spaces.

VII. CONCLUSIONS AND FUTURE WORK

We have suggested a way to program adaptive systems.

Building upon the modularity and incrementality of the

691

scenario-based approach, the result appears to be a natural

programming experience, yielding programs that are also

easier to comprehend and maintain. Setting and removing

goals can be easily done, and the changes can be monitored

and debugged using the tool visualization.

We have examined three learning mechanisms, all based

on the scenario-based structure of the program and requir-

ing no further work from the programmer. The egocentric

method, where each scenario only cares about its own

state, seems to give best results in the short term, and full

learning grants a slow and promised learning rate. Perceptual

learning, where each scenario only takes scenarios that affect

it into account, seems to be most suitable for dynamic

environments. It appears to exhibit reasonable learning time

and reasonable memory and CPU requirements in many ap-

plications. However, in some cases it can be easily shown to

be no better than the full learner. Clearly, further evaluation

of these is still required, especially on more complex real

world applications. It would also be interesting to examine

properties of the inter-dependency graph on different types

of adaptive systems.

Future research directions also include integrating with

other work on behavioral programming. Combined with

smart play-out [24], for example, the program could strive

to reach goals while avoiding chart violations. Generating

executable goal-scenarios from natural language [25] also

seems like a promising direction.

The extension we offer here deals only with discrete

action and state spaces. It would seem interesting to develop

a generalization algorithm, also built upon a scenario-based

language and exploiting its structure, but one that would

allow continuous actions and states as well. In addition,

integrating smart meta-parameter learning methods can help

yield optimized results, without added programming effort;

and using a reward shaping function, which, given a goal-

scenario and its current state, estimates its progress toward

accomplishing its goal, can further improve the learning

rate [26].

ACKNOWLEDGMENTS

We would like to greatly thank Assaf Marron and Gera

Weiss for their ideas and comments. The research was

supported by an Advanced Research Grant to DH from the

European Research Council (ERC), and by the John von

Neumann Minerva Center for the Development of Reactive

Systems at the Weizmann Institute of Science.

REFERENCES

[1] W. Damm and D. Harel, “LSCs: Breathing Life into Message
Sequence Charts,” Form. Methods Syst. Des., vol. 19, pp. 45–
80, 2001.

[2] D. Harel, “Can Programming Be Liberated, Period?” Com-
puter, vol. 41, pp. 28–37, 2008.

[3] D. Harel, A. Marron, and G. Weiss, “Programming Coordi-
nated Behavior in Java,” in Proc. 24th European Conference
on Object-Oriented Programming.

[4] ——, “Behavioral Programming,” Comm. Assoc. Comput.
Mach., to appear.

[5] D. Harel and R. Marelly, “Specifying and Executing Behav-
ioral Requirements: The Play-In/Play-Out Approach,” Soft-
ware and System Modeling (SoSyM), vol. 2, pp. 82–107, 2003.

[6] D. Harel, S. Maoz, S. Szekely, and D. Barkan, “PlayGo:
Towards a Comprehensive Tool for Scenario Based Program-
ming,” in Proc. of the IEEE/ACM int. conf. on Automated
software engineering, ser. ASE, 2010, pp. 359–360.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. MIT Press, 1998.

[8] N. Sprague and D. Ballard, “Multiple-Goal Reinforcement
Learning with Modular Sarsa(0),” in Proc. of the 18th int.
joint conf. on Artificial intelligence, 2003, pp. 1445–1447.

[9] S. J. Russell and A. Zimdars, “Q-Decomposition for Rein-
forcement Learning Agents,” in Proc. of the 20th Int. Conf.
on Machine Learning, ser. ICML, 2003, pp. 656–663.

[10] S. Singh, T. Jaakkola, M. L. Littman, and C. S. Ari, “Con-
vergence Results for Single-Step On-Policy Reinforcement-
Learning Algorithms,” in Machine Learning, 1998, pp. 287–
308.

[11] J. Karlsson, “Learning to solve multiple goals,” Ph.D. disser-
tation, University of Rochester, 1997.

[12] C. Simpkins, S. Bhat, C. Isbell, Jr., and M. Mateas, “Towards
Adaptive Programming: Integrating Reinforcement Learning
into a Programming Language,” SIGPLAN Not., vol. 43, pp.
603–614, 2008.

[13] S. Bhat, C. L. Isbell, and M. Mateas, “On the Difficulty of
Modular Reinforcement Learning for Real-World Partial Pro-
gramming,” in Proc. of the 21st National Conf. on Artificial
intelligence - Volume 1, 2006, pp. 318–323.

[14] J. Loch and S. Singh, “Using Eligibility Traces to Find
the Best Memoryless Policy in Partially Observable Markov
Decision Processes,” in Proc. of the 15th Int. Conf. on
Machine Learning, ser. ICML, 1998, pp. 323–331.

[15] N. Eitan, D. Harel, M. Gordon, A. Marron, and G. Weiss,
“On Visualization and Comprehension of Scenario-Based
Programs,” in Proc. of the 19th IEEE Int. Conf. on Program
Comprehension, ser. ICPC, 2011.

[16] BPJ Visualization site. [Online]. Available: http://www.cs.
bgu.ac.il/∼geraw/SupWebSite/

[17] JUNG. [Online]. Available: http://jung.sourceforge.net

[18] BPJ. [Online]. Available: http://www.cs.bgu.ac.il/∼geraw/

[19] I. Ghory, “Reinforcement Learning in Board Games ,” De-
partment of Computer Science, University of Bristol, Tech.
Rep., 2004.

[20] R. A. Brooks, “Elephants don’t play chess,” Robotics and
Autonomous Systems, vol. 6, pp. 3–15, 1990.

[21] J. J. Bryson, “Cross-Paradigm Analysis of Autonomous Agent
Architecture,” Journal of Experimental and Theoretical Arti-
ficial Intelligence, vol. 12, no. 2, pp. 165–190, 2000.

[22] P. Maes, “Situated Agents Can Have Goals,” Robot. Auton.
Syst., vol. 6, pp. 49–70, 1990.

[23] M. Mateas and A. Stern, “A Behavior Language For Story-
Based Believable Agents,” Intelligent Systems, IEEE, vol. 17,
no. 4, pp. 39 – 47, 2002.

[24] D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart Play-
out of Behavioral Requirements,” in Proceedings of the 4th
International Conference on Formal Methods in Computer-
Aided Design, ser. FMCAD, 2002, pp. 378–398.

[25] M. Gordon and D. Harel, “Generating Executable Scenarios
from Natural Language,” in Proc. of the 10th Int. Conf. on
Computational Linguistics and Intelligent Text Processing,
ser. CICLing, 2009, pp. 456–467.

[26] A. Y. Ng, D. Harada, and S. Russell, “Policy Invariance under
Reward Transformations: Theory and Application to Reward
Shaping,” in Proc. of the 16th Int. Conf. on Machine Learning,
1999, pp. 278–287.

692

